ESPACES PRÉHILBERTIENS

Produit scalaire

Exercice 1. On pose $E = \mathbb{R}[X]$ et

$$\forall P, Q \in E$$
 $\langle P, Q \rangle = \int_0^1 P(t)Q(t)dt$

- 1) Montrer que $\langle \cdot, \cdot \rangle$ définit un produit scalaire sur E.
- 2) On pose $P = 2X^2 + 1$ et Q = -X. Calculer $\langle P, Q \rangle$, ||P|| et ||Q||, où $||\cdot||$ est la norme euclidienne associée au produit scalaire $\langle \cdot, \cdot \rangle$.

Exercice 2. Dans $E = \mathbb{R}^2$, on pose, pour tous $u = (x_1, y_1)$ et $v = (x_2, y_2)$,

$$(u \mid v) = 2x_1x_2 + x_1y_2 + x_2y_1 + 3y_1y_2$$

Montrer que $(\cdot | \cdot)$ est un produit scalaire sur E.

Exercice 3. Soit E un e.v. euclidien et $f,g\in\mathcal{L}(E)$ tels que : $\forall x\in E$ ||f(x)||=||g(x)||. Montrer que

$$\forall x, y \in E \qquad (f(x) \mid f(y)) = (g(x) \mid g(y))$$

Exercice 4 (**Ultra classique !**). Soit $x_1, \ldots, x_n \in \mathbb{R}$. Montrer que $\left(\sum_{k=1}^n x_k\right)^2 \le n \sum_{k=1}^n x_k^2$. On pourra utiliser l'inégalité de Cauchy-Schwarz dans \mathbb{R}^n .

Exercice 5. Majorer $\int_0^1 \sqrt{x}e^{-x}dx$ en utilisant l'inégalité de Cauchy-Schwarz.

Exercice 6. On pose $E=\mathcal{M}_{n,p}(\mathbb{R})$. Montrer que l'application $\varphi:E\times E\to\mathbb{R}$ définie par

$$\varphi(A,B) = \operatorname{tr}(A^{\top}B)$$

est un produit scalaire sur E. On l'appelle <u>produit scalaire canonique sur $\mathcal{M}_{n,p}(\mathbb{R})$.</u> En déduire que pour tout $A \in \mathcal{M}_n(\mathbb{R})$, on a

$$0 \le \operatorname{tr}(A^{\top}A) \le \operatorname{tr}(A^2)$$

Orthogonalité –

Exercice 7. On munit \mathbb{R}^n du produit scalaire canonique. Déterminer les vecteurs de \mathbb{R}^n orthogonaux à $(1, \dots, 1)$.

Exercice 8. Déterminer F^{\perp} dans chacun des cas suivants :

- 1) F = Vect((2,1,3),(1,7,-1))
- 2) $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$
- 3) $F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y z + t = 0 \text{ et } x + 2y + 3z + t = 0\}$

Exercice 9. Soit E un espace euclidien et F, G deux s.e.v. de E. Montrer que

$$(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$$
 et $F^{\perp} + G^{\perp} = (F \cap G)^{\perp}$

Exercice 10. Soit *E* un espace euclidien et *X* une partie quelconque de *E*. Montrer que $(X^{\perp})^{\perp} = \text{Vect}(X)$

Exercice 11. On pose $E=\mathcal{M}_n(\mathbb{R})$ et on considère le produit scalaire φ sur E défini par :

$$\forall A, B \in E$$
 $\varphi(A, B) = \operatorname{tr}(A^{\top}B)$

On note $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$ les ensembles des matrices symétriques et antisymétriques. Montrer que

$$(\mathcal{S}_n(\mathbb{R}))^{\perp} = \mathcal{A}_n(\mathbb{R})$$

Bases orthonormées -

Exercice 12. Soit $E = \mathbb{R}^3$ muni du produit scalaire usuel, et

$$u_1 = \frac{1}{\sqrt{3}}(1,1,1)$$
 $u_2 = \frac{1}{\sqrt{2}}(1,0,-1)$ $u_3 = \frac{1}{\sqrt{6}}(1,-2,1)$

- 1) Vérifier que (u_1, u_2, u_3) est une famille orthogonale, puis montrer que c'est une base orthonormée de E.
- 2) Déterminer les composantes des vecteurs x = (3, -2, 7) et y = (4, 1, -5) selon cette base.
- 3) Soit $v = \alpha u_1 + \beta u_2 + \gamma u_3$ avec $\alpha, \beta, \gamma \in \mathbb{R}$. À quelle condition sur α, β, γ est-ce que ||v|| = 1?

Exercice 13. Orthonormaliser les bases suivantes :

- 1) Dans $E = \mathbb{R}^2$, la base (e_1, e_2) avec $e_1 = (1, 1)$ et $e_2 = (0, 1)$.
- 2) Dans $E = \mathbb{R}^3$, la base (e_1, e_2, e_3) avec $e_1 = (1, 1, -1)$, $e_2 = (1, -1, 1)$ et $e_3 = (-1, 1, 1)$.

Projections orthogonales

Exercice 14. Dans $E = \mathbb{R}^4$ muni du produit scalaire canonique, on considère le s.e.v $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = 0\}$. On note $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de E et p le projecteur orthogonal sur F. Nous allons déterminer la matrice $M = \operatorname{Mat}_{\mathcal{B}}(p)$ de deux manières différentes.

1)

- (a) Déterminer une famille génératrice (très simple) de F, qu'on notera (u, v).
- (b) On souhaite calculer $p(e_1)$. On pose alors $p(e_1) = \lambda u + \mu v$ avec $\lambda, \mu \in \mathbb{R}$ à déterminer. En utilisant le fait que $e_1 p(e_1)$ est orthogonal à u et à v, déterminer λ, μ (donc $p(e_1)$).
- (c) Faire de même pour calculer $p(e_2)$ et $p(e_3)$.
- (d) En déduire M.

2)

- (a) Déterminer une base orthonormée de F.
- (b) Déterminer $p(e_1)$, $p(e_2)$ et $p(e_3)$.
- (c) En déduire *M*.

Exercice 15. On munit $E = \mathbb{R}[X]$ du produit scalaire

$$\forall P, Q \in E$$
 $\langle P, Q \rangle = \int_0^1 P(t)Q(t)dt$

- 1) Déterminer une base orthonormée de $\mathbb{R}_1[X]$ pour ce produit scalaire. *Indication : orthonormaliser une base quelconque de* $\mathbb{R}_1[X]$ *via Gram-Schmidt.*
- 2) En déduire $\inf_{(a,b)\in\mathbb{R}^2}\int_0^1 (t^2-at-b)^2 dt$.

Exercice 16. Calculer $\inf_{(a,b)\in\mathbb{R}^2}\int_0^{2\pi}(x-a\cos x-b\sin x)^2\,dx$.